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Abstract

Recommendation systems when employed in markets play a dual role: they assist
users in selecting their most desired items from a large pool and they help in allo-
cating a limited number of items to the users who desire them the most. Despite
the prevalence of capacity constraints on allocations in many real-world recom-
mendation settings, a principled way of incorporating them in the design of these
systems has been lacking. Motivated by this, we propose an interactive frame-
work where the system provider can enhance the quality of recommendations to
the users by opportunistically exploring allocations that maximize user rewards
and respect the capacity constraints using appropriate pricing mechanisms. We
model the problem as an instance of a low-rank combinatorial multi-armed bandit
problem with selection constraints on the arms. We employ an integrated approach
using techniques from collaborative filtering, combinatorial bandits, and optimal
resource allocation to provide an algorithm that provably achieves sub-linear re-
gret, namely Õ(

√
NM(N +M)RT ) in T rounds for a problem with N users,

M items and rankR mean reward matrix. Empirical studies on synthetic and real-
world data also demonstrate the effectiveness and performance of our approach.

1 Introduction
Online recommendation systems have become an integral part of our socioeconomic life with the
rapid increases in online services that help users discover options matching their preferences. De-
spite providing efficient ways to discover information about the preferences of users, they have
played a largely complementary role to searching and browsing with little consideration of the ac-
companying markets within which recommended items are allocated to the users. Indeed, in many
real-world scenarios, recommendations bring about the allocation of the corresponding items in a
market that has possibly intrinsic constraints. In particular, recommendations of candidate items
that have associated notions of limited capacities naturally give rise to a market setting where users
compete for the allocation of the recommended items.

Allocation constraints are common in recommendation contexts. A few interesting examples in-
clude: (1) Point-of-Interest (PoI) recommendation systems (e.g., restaurants, theme parks, hotels),
where the PoI can only accomodate limited number of visitors, (2) book recommendation systems
employed by libraries, where the books recommended to the borrowers have limited copies, (3)
route recommendation systems which aim to suggest the optimal road for travelling while avoiding
traffic congestion, (4) course recommendation systems for universities, where each recommended
course has limited number of seats. As similar systems become more ubiquitous and impactful
in the broader aspects of daily life, there is a huge application drive and potential for delivering
recommendations that respect the requirements of the market. Therefore, it is crucial to consider
capacity-aware recommendation systems to maximize the user experience.
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Main Challenges: We model the user preferences as rewards that users obtain by consuming dif-
ferent items, while the social welfare is the aggregate reward over the entire system comprising
multiple users with heterogeneous preferences, and a provider who continually recommends items
to the users and receives interactive reward feedback from them. The provider aims to maximize the
social welfare while respecting the time-varying allocation constraints: indeed we consider system
dynamics in terms of user demands and item capacities to be an important aspect of our problem.
In the process of identifying the best match between users and target items, the provider encounters
two challenges: The first challenge relates to the element of recommendation as the provider needs
to make recommendations without exact knowledge of the user preferences ahead of time, and hence
has to continue exploring user preferences while continually making recommendations. The second
challenge relates to the allocation aspect of the problem induced by the market constraints. Note that
even if matching the users with their most preferred items would result in high rewards, such an al-
location may not respect the constraints of the market. For example, in a restaurant recommendation
setting, if there is a hugely popular restaurant that most people love, a naive recommender would
send many users to the same restaurant, causing overcrowding and considerable user dissatisfaction.

The key to overcoming the (first) challenge of making accurate recommendations is to learn the
user preferences from the reward feedback. Since the preferences of different users for different
items are highly correlated, it is natural to employ collaborative filtering techniques that have been
widely applied in recommender systems [1, 2, 3, 4]. In order to learn the user preferences efficiently,
previous works have established interactive collaborative filtering systems that query the users with
well-chosen recommendations [5, 6]. Typically, these works consider a setting where a single user
arrives to the system at each round and the system makes a recommendation that will match the
user’s preferences. However, this assumption no longer holds in applications having an associated
market structure, as recommendations made to different users in the same time period must also
respect the constraints of the market.

The common strategy to tackling the (second) allocation challenge is through pricing mechanisms
that ensure social optimality. Such mechanisms have been studied in economics for two-sided (sup-
ply and demand) markets and are called Walrasian auctions [7]. In the networking literature, Kelly
has also used similar mechanisms to do optimal bandwidth allocation over a network [8]. In pricing-
based mechanisms, the users choose the items based on their preferences as well as the posted prices.
The provider meanwhile successively adjusts these prices in response to the user’s demand for the
items, so that capacity constraints are satisfied in equilibrium. The equilibrium prices ensure that the
limited number of items are allocated to users that are expected to obtain the largest reward. How-
ever, these mechanisms still require the users to know and evaluate their preferences for all possible
items and respond constantly with their updated bids/demands for each item. This is definitely not
a scalable solution for the large-scale system (comprising large numbers of users and items) that
we target. Furthermore, this framework assumes that users already know their preferences for all
items, which is clearly not true in our setting, where users report their preferences through feedback
after being targeted with their recommended items. For this reason, the provider must learn the user
preferences in its quest to perform optimal capacity-constrained allocations.

Figure 1: The provider interac-
tively learns the user preferences to
achieve socially optimal capacity-
constrained allocations.

Hence, as depicted in Figure 1, the goal of the provider is
twofold: (1) to learn the user preferences and make recom-
mendations that will guide the users to choose the items that
they are likely to obtain high rewards, (2) to achieve allo-
cations that will satisfy the capacity constraints. To achieve
these goals, we envision developing the following market-
aware recommendation mechanism for the provider. By rec-
ommending items, the provider helps the users to narrow
down their options so that users can comprehend and evaluate
their preferences among a smaller number of offered items.
In addition, being aware of the market structure, the provider
carefully determines the item prices that play the role of an
intermediary for satisfying the constraints of the market. We
believe that this is an important and practically-relevant ques-
tion to be resolved because it allows for the analysis of many
interesting real-world interactive recommendation settings with market constraints. In its full gener-
ality, this framework requires us to model the user decisions in a way that will capture the effects of
the recommendations and prices that they are presented. In order to avoid the complications intro-
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duced by this modelling challenge and to obtain a profound understanding of fundamental aspects
of the problem, we begin with focusing our attention on a central question whose solution will be
key to making progress towards our longer-term goal of developing a complete framework.

Specifically, we focus our study on these essential aspects of the problem: recommending and allo-
cating the items while interactively learning the user preferences, which to the best of our knowledge
has not been addressed in the literature. In essence, we analyze a special case of the mechanism in-
troduced above, by assuming that the provider makes recommendations such that the number of
presented choices matches with the number of items the user is willing to consume, so that the users
obtain all of the recommended items regardless of their prices. Then, the provider’s task reduces
to deciding on high-reward allocations while satisfying the constraints by allocating each item to at
most certain number of users.

Structured Combinatorial Multi-Armed Bandits: The provider seeks to choose high-reward al-
locations subject to the constraints, while actively learning the user preferences by making queries
that will give rise to the most informative responses. Therefore, it encounters the well-known
exploration-exploitation dilemma. In essence, there exists a trade-off between two competing goals:
maximizing social welfare using the historical feedback data, and gathering new information to
improve the performance in the future. In the literature of interactive collaborative filtering, this
dilemma is typically formulated as a multi-armed bandit problem where each arm corresponds to
allocation of an item to a user [6, 9, 10]. When an item is allocated to a user, a random reward
is obtained and the reward information is fed back to the provider to improve its future allocation
strategies. However, in contrast to prior works, our setting further requires that a collection of actions
taken for different users satisfy the constraints of the market.

We formulate our problem as a bandit problem with arms having correlated means, and call it Struc-
tured Combinatorial Bandit. Based on the standard OFU (Optimism in Face of Uncertainty) princi-
ple for linear bandits [11, 12], we devise a procedure that learns the mean reward values opportunis-
tically so as to solve the system problem of optimal allocation with minimum regret. The estimation
method benefits from both the combinatorial nature of the feedback and the dependencies induced
by the low-rank structure of collaborative filtering setting. Moreover, using matrix factorization
techniques, the algorithm is efficient even at scale in settings with a large number of users and items.
As is standard with OFU-based methods, our algorithm maintains a confidence set of the mean re-
wards for all user-item pairs. If it has less data about some user-item allocation pair, the confidence
set becomes wider in the corresponding direction. Then, due to optimism, the algorithm becomes
more inclined to attempt the corresponding allocation pairs to explore and collect more information.

Our contributions:
• We formulate the problem of making recommendations that will facilitate socially optimal alloca-

tion of items with constraints. Our formulation further allows for the analysis of problem settings
with dynamic (i.e., time-varying) item capacities and user demands.

• We pose the Structured Combinatorial Bandit problem under generic structural assumptions (not
only low-rank) and propose an algorithm that achieves sublinear regret bounds in terms of param-
eters that depend on the problem-specific structure of the arms.

• For the recommendation setting, we specialize our results to low-rank structures and obtain a Low-
Rank Combinatorial Bandit (LR-COMB) algorithm that achieves Õ(

√
NM(N +M)RT ) regret

in T rounds for a problem with N users, M items and rank R mean reward matrix.

Experiments: We run experiments both on synthetic and real-world datasets to show the efficacy of
the proposed algorithms. Results show that proposed algorithm can obtain significant improvements
over naive approaches in solving the problem of recommendation and allocation with constraints.

Related work:
• Combinatorial Multi-Armed Bandits (CMAB) and Semi-Bandits: The frameworks of CMAB

[13, 14] and semi-bandits [15] model multi-armed bandit problems where the player chooses a
subset of arms in each round and observes individual outcomes of the played arms. However,
they do not incorporate any structural assumptions about the rewards obtained from the arms.
However, in a collaborative filtering setting like ours, the main promise is to leverage the intrinsic
structure between different user-item pairs. To close this gap, we pose the problem of Structured
Combinatorial Bandits and devise an algorithm that makes use of the structure of the arms as well.
Additionally, CMAB framework assumes availability of an oracle that takes the means rewards for
the arms and outputs the optimum subset of arms subject to the selection constraints. Due to the
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combinatorial nature of the problem, this oracle may not be readily available in general CMAB
settings. In our case, due to the special structure of the capacity constraints, we can efficiently
solve for the optimum allocations given the mean rewards of the allocation pairs.

• Structured Linear Bandits: Our formulation also shows parallelism with the frameworks of
structured linear bandits [16, 17] and low-rank linear bandits [18]. However, it is distinct from
them by having the additional ability to capture the combinatorial nature of the problem. In linear
bandits, the player only observes the final total reward, but no outcome of any individual arm. Our
setup differs from their case because the player (provider) is able to observe individual outcomes
of all played arms. Due to this richer nature of the observation model, we can achieve lower regret
guarantees than what is available in the literature of structured linear bandits.

• Recommendation with Capacity Constraints: There have been a few works using the notion
of constrained resources to model and solve the problem of recommendation with capacity con-
straints [19, 20]. However, these works only consider optimizing the recommendation accuracy
subject to item usage constraints without any consideration of the interactive mechanisms that
discover user preferences through recommendations.

• Competing Bandits in Matching Markets: One other related line of literature studies the stable
matching problem in two-sided markets [21]. The model assumes that entities on each side of
the market has preference orderings for the other side of the market and the allocations are driven
by these preference orderings rather than the prices. In contrast to our work, these mechanisms
necessitate at least the entities on one side of the market know their preferences over all the entities
on the other side of the market. However, in many real-world settings of optimum recommendation
and allocation, like the examples given above, the explicit preferences are not known ahead of time
and can only be discovered through interactions. Furthermore, the matching markets only model
one-to-one matches, meaning that they do not allow for the items to be allocated for multiple users.

2 Problem setting
We use bold font for vectors x and matrices X, and calligraphic font X for sets. We denote by
[K] the set {1, 2, . . . ,K}. For a vector x, we denote its i-th entry by xi and for a matrix X,
we denote its (i, j)-th entry by xij . We denote the Frobenius inner product of two matrices by
〈A,B〉 = trace(ATB), and the Frobenious norm of a matrix A by ‖A‖F.

Suppose the system has N users and M items in record. The items are allocated to the users in
multiple rounds (or periods) denoted by t ∈ N. Allocation of an item i ∈ [M ] to a user u ∈ [N ]
results in a random reward that has a distribution unknown to the system provider. The expected
reward obtained from allocating item i to user u is denoted by θ∗ui and these values are collected into
the mean reward matrix Θ∗ ∈ RN×M .

We assume that each item has (time-varying) capacity that corresponds to the maximum number of
different users it can be allocated to. We denote the capacity of item i ∈ [M ] by ct,i, and collect these
values into vectors ct ∈ RM . Similarly, each user has a (time-varying) demand that corresponds to
the maximum number of different items it can get allocated. We denote the demand of user u ∈ [N ]
by dt,u, and collect these values into vectors dt ∈ RN . Therefore, each item can only be allocated
to at most ct,i different users, while each user can only get allocated at most dt,u different types of
items in the period t. We shall call these the allocation constraints. One can consider the special
case where dt,u parameters only take values from {0, 1} so that each active user gets at most one
allocation while the inactive users do not get any allocations.

Let Xt denote the allocation matrix for round t where the (u, i)-th entry is one if user u is allocated
item i at round t, and zero otherwise. Due to the allocation constraints, any valid Xt must belong to
the set of valid allocation matrices Xt ⊆ {0, 1}N×M defined as:

Xt = {X ∈ {0, 1}N×M : X1M ≤ dt and XT1N ≤ ct}

where the inequalities are entry-wise and 1p denotes the all-ones vector of size p.

2.1 Optimal allocations

Given the knowledge about the mean reward matrix Θ∗, the optimal allocation X∗t at time t can be
obtained by solving the integer program:

X∗t ∈ arg max
X∈Xt

〈X,Θ∗〉 (2.1)
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This integer program can be relaxed to a linear program by dropping the integral constraints (setting
0 ≤ xui ≤ 1). In Appendix B, we show that the integrality gap of this problem is zero. 2 Hence,
any integer solution found for the relaxed problem is also a solution for the allocation problem.

When the provider does not have direct knowledge of the mean rewards associated with user-item
allocation pairs, one standard approach is to employ pricing mechanisms [7, 8]. The idea is to apply
dual decomposition on the (partial) Lagrangian function L(X,λ) = 〈X,Θ∗〉 + λT(ct − XT1N )
where λ ≥ 0 are the Lagrange multipliers (item prices) associated with the capacity constraints.
Then, the allocation problem is decomposed into one problem for each user and one problem for the
provider where the item prices mediates between the subsidiary problems. Each user calculates its
demand by maximizing the corresponding component of the Lagrangian for a given set of prices.
On the other side, the provider iteratively updates the prices based on users demands to achieve the
optimal pricing. At the end of many consecutive updates from users and the provider, the equilibrium
ensures that the limited items are allocated to users that are expected to obtain the largest reward.
(See [22] for further details.)

However, as discussed in the introduction, this pricing mechanism has limitations in many real-world
applications. Most importantly, it requires the user to solve a problem that involves the valuations
even for the items that the user has no prior experience with. However, in many real-world scenarios,
it is infeasible to request the users to choose among all the items in the system. Secondly, in the
process of price discovery, the mechanism asks the users to repetitively respond to the prices by
recomputing their demands. However, since it might take many iterations until convergence to the
optimal pricing, asking the users to respond many times would be a burden for them. Furthermore,
the final prices found by this iterative mechanism are only guaranteed to be optimal for the problem
defined by the capacity ct and demand dt parameters at round t. If the capacities and demands vary
with time, the optimal pricing and allocation for the next allocation round t+ 1 will be different and
will be needed to be rediscovered.

2.2 Learning the optimal allocations
To address the issues discussed in the previous section, we need mechanisms that can find the opti-
mum allocations using fewer and simpler interactions. One resolution is to recommend a subset of
items along with prices intelligently chosen by the provider. This way, the users will be able to easily
evaluate their preference on the small number of recommended items and decide on their demand
without requiring to consider all items in the system. The provider will decide on well-chosen offer-
ings with correct prices so that it can satisfy the capacity constraints. However, as the provider does
not have the complete knowledge of the user preferences, it needs to learn the unknown preference
parameters Θ∗ from the user feedback so that it can determine better recommendations as well as
the correct prices. Based on the examples of applications provided in the introduction, we believe
that design of such system dynamics is a practically-relevant question to be resolved.

As a first step in this direction, we decide to restrict our attention to a setting that itself has interesting
interactions between learning the user preferences and allocating the items. In order to facilitate our
analysis, we consider that the number of choices presented to each user u at round t is limited exactly
by the their demand dt,u and users are allocated with all of the items that they are recommended.
Therefore, the problem essentially reduces to an allocation problem in which users get allocated a
set of items directly by the provider instead of users choosing between the offerings. Then, after
each round of allocation, users provide feedback about the items that they have been allocated so
that the provider can enhance its performance in the following rounds. Hence, whilst the users get
allocated sequentially, the predictions are constantly refined using the reward feedback.

The provider determines the allocations according to an optimistic estimate of the true mean reward
matrix Θ∗. It solves the allocation problem (2.1) assuming that the estimated parameter is the
underlying reward parameter and obtains an estimate for the optimum allocation at each round t.
Even though these allocations can be suboptimal due to estimation errors, our analysis shows that
the cumulative regret obtained from these sequential allocations can only grow sublinearly with the
time horizon. Using this approach, we are coupling the general principle of optimism in the face
of uncertainty (OFU) along with capacity aware resource allocation. In the experiments section,
we show the importance of this connection by comparing our strategy with algorithms that only
focus on one aspect of the problem: a non-OFU algorithm that only aims for achieving momentary
performance and an OFU-based algorithm that is unaware of the capacities.

2The integrality gap is the difference between optimal values of the integer program and its linear relaxation.
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Remark 2.1. When the allocation problem (2.1) is solved with the estimated parameters, the La-
grange multipliers for the capacity constraints give estimates for the optimum prices of the items.
As long as the user preferences are estimated well enough, these prices emerging from provider’s
problem are such that users who are aware of their preference for all items would still choose the rec-
ommended items. Hence, when the user preferences are learned, the mechanism is able to achieve
high-reward allocations that complies with the user incentives under the optimal pricing.

2.3 Problem formulation
In this section, we formulate the provider’s problem and its objective. At each time period t, the
provider chooses multiple user-item allocation pairs collected into a set At ⊆ [N ] × [M ]. Then,
the provider observes a random reward Rt,u,i if user u is allocated with item i at round t. The
total reward is the sum of rewards obtained from the system at all rounds during a time horizon T .
The task is to repeatedly allocate the items to the users in multiple rounds so that the total expected
reward of the system is as close to the reward of the optimal allocation as possible.

Letting Eu,i ∈ RN×M denote the zero-one matrix with a single one at the (u, i) entry, we can write
the indicator matrix for the allocation at time t as Xt =

∑
(u,i)∈At Eu,i. Consequently, Xt becomes

a zero-one matrix with ones at entries At and zeros everywhere else. Note that there is a one-to-one
relation between the matrix Xt and the set At.
We denote by Ht the history {Xτ , (Rτ,u,i)(u,i)∈Aτ }

t−1
τ=1 of observations available to the provider

when choosing the next allocation Xt. The allocator employs a policy π = {πt|t ∈ N}, which is a
sequence of functions, each mapping the history Ht to an action Xt. Then, the T period cumulative
regret of a policy π is the random variable

R(T, π) =

T∑
t=1

[〈X∗t ,Θ∗〉 − 〈Xt,Θ
∗〉]

where X∗t ∈ arg maxX∈Xt 〈X,Θ
∗〉 denotes optimum allocation at time t.

3 Methodology
In order to facilitate our analysis, we start by making the following assumptions that are standard in
the multi-armed bandits literature.

Assumption 1. For all u ∈ [N ], i ∈ [M ] and t ∈ N, the rewards Rt,u,i are independent and
η-sub-Gaussian with mean θ∗u,i ∈ [0, B].

To model the dependency between the mean rewards obtained from different user-item pairs, we
employ the following assumption. We first present our algorithm and theoretical results under the
general setting given by this assumption, and specialize for the setting of the collaborative filtering
in following sections.

Assumption 2. The mean reward matrix Θ∗ belongs to a known structure set L ⊆ RN×M .

In order to make use of initial historical data possibly available to the provider, we assume that the
algorithm has access to an initial rough estimate Θ that satisfies ‖Θ−Θ∗‖F ≤ G. Such an estimate
can be constructed using an off-the-shelf low-rank matrix completion algorithm on the initialization
data. If such observations are not readily available at the time of initialization, they can be obtained
by randomly sampling some of the user-item allocation pairs once. It is worth to note that one can
also set Θ = 0 and let G be some number satisfying ‖Θ∗‖F ≤ G.

Algorithm 1 Structured Combinatorial Multi-Armed Bandit

Require: horizon T , initial estimate Θ ∈ RN×M with ‖Θ−Θ∗‖F ≤ G.
for t = 1, 2, . . . , T do

Find the regularized least squares estimate Θ̂t = arg minΘ∈L
{
L2,t(Θ) + γ‖Θ−Θ‖22

}
Construct the confidence set Ct = {Θ ∈ L : ‖Θ− Θ̂t‖2,Et ≤

√
β∗t (δ, α, γ)}

Compute the action vector Xt = arg maxX∈Xt maxΘ∈Ct 〈X,Θ〉
Play the arms At according to Xt

Observe Rt,u,i for all (u, i) ∈ At
end for
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Our method summarized in Algorithm 1 follows the standard OFU (Optimism in Face of Uncer-
tainty) principle [12]. It maintains a confidence set Ct which contains the true parameter Θ∗ with
high probability and chooses the allocation Xt according to

Xt = arg max
X∈Xt

{
max
Θ∈Ct

〈X,Θ〉
}

(3.1)

Typically, the faster the confidence set Ct shrinks, the lower regret we have. However, the main
difficulty is to construct a series of Ct that leverage the combinatorial observation model as well
as the structure of the parameter so that we have low regret bounds. In this work, we consider
constructing confidence sets that are centered around the regularized least square estimates. We let
the cumulative squared prediciton error at time t be

L2,t(Θ) =

t−1∑
τ=1

∑
(u,i)∈Aτ

(θui −Rτ,u,i)2,

and define the regularized least squares estimate at time t as

Θ̂t = arg min
Θ∈L

{
L2,t(Θ) + γ‖Θ−Θ‖22

}
. (3.2)

Then, the confidence sets take the form Ct := {Θ ∈ L : ‖Θ − Θ̂t‖2,Et ≤
√
βt} where βt is an

appropriately chosen confidence parameter, and the regularized empirical 2-norm ‖ · ‖2,Et is

‖∆‖22,Et :=

N∑
u=1

M∑
i=1

(nt,u,i + γ)(∆ui)
2,

where nt,u,i :=
∑t−1
τ=1 1{(u, i) ∈ Aτ} is the number of times item i has been allocated to user u be-

fore time t (excluding time t). Hence, the empirical 2-norm is a measure of discrepancy that weighs
the entries depending on how much they have been explored. Roughly speaking, since the confi-
dence ellipsoid constructed using the 2-norm is wider in directions that are not yet well-explored,
the OFU step described in 3.1 is more inclined to make allocations that include the corresponding
user-item pairs. In order to obtain low-regret guarantees for the allocations, the first step is to choose
correct βt parameter such that Ct will contain the true parameter Θ∗ for all t with high probability.
In order to take advantage of the structure of the arms, we letN (F , α, ‖ · ‖F) denote the α-covering
number of F in the Frobenious-norm ‖ · ‖F, and let

β∗t (δ, α, γ) := 8η2 log (N (L, α, ‖ · ‖F)/δ) + 2αtNM
[
8B +

√
8η2 log(4NMt2/δ)

]
+ 4γG2.

Then, the following Lemma establishes that if we set βt = β∗t (δ, α, γ), the resulting confidence sets
have the desired properties.

Lemma 3.1. For any δ > 0, α > 0, γ > 0, let Θ̂t be the regularized least squares estimate given
in 3.2. If the confidence sets are given as

Ct := {Θ ∈ L : ‖Θ− Θ̂t‖2,Et ≤
√
β∗t (δ, α, γ)}, (3.3)

then with probability at least 1− 2δ, Ct 3 Θ∗, for all t ∈ N.

Finally, we show that if the structured combinatorial bandits algorithm follows the OFU allocations
given in (3.1) while constructing the confidence sets according to (3.3), it obtains the following
overall regret guarantee:
Theorem 3.2. Under Assumptions 1 and 2, for any δ > 0, α > 0, γ ≥ 1, with probability 1 − 2δ,
the cumulative regret of Algorithm 1 is bounded by

R(T, π) ≤
√

8NMβ∗T (δ, α, γ)T log (1 + T/γ).

3.1 Low-Rank COMbinatorial Bandits (LR-COMB)
As common in collaborative filtering settings, the correlation between users and arms can be cap-
tured through a matrix factorization model that leads to a low-rank mean reward matrix. Each user
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u (item i) is associated with a feature vector pu (qi) in a shared R-dimensional space (typically
R � M,N ), and the mean reward of each user-item allocation pair is given by θ∗ui = pT

uqi. Con-
sequently, the mean reward matrix satisfies the factorization Θ∗ = PQT for some P ∈ RN×R and
Q ∈ RM×R. Based on this observation and the boundedness condition given in Assumption 1, we
can choose the structure set L as

L = {Θ ∈ RN×M : rank(Θ) ≤ R, θui ∈ [0, B],∀u, i}. (3.4)

Then, Lemma F.1 in the appendix shows that the covering number for L given in equation (3.4) is
upper bounded by logN (L, α, ‖ · ‖F) ≤ (N + M + 1)R log(9B

√
NM/α). Therefore, the regret

guarantee for a setting with low-rank mean reward matrix becomes:
Theorem 3.3 (Regret of LR-COMB). Under Assumption 1 and Assumption 2 with L given in (3.4),
the Algorithm 1 achieves cumulative regret

R(T, π) = Õ
(√

NM(N +M)RT
)
, (3.5)

where Õ is the big-O notation, ignoring the poly-logarithmic factors of N,M, T,R.

In comparison, if we were to ignore the low-rank structure between the mean rewards obtained from
user-item allocation pairs and apply the standard combinatorial bandit algorithms (e.g., CUCB [13]),
we would suffer Õ(NM

√
T ) regret [14]. Since R � M,N in many applications of collaborative

filtering, our algorithm significantly outperforms this naive approach. As common in the literature of
combinatorial bandits, one possible approach to improve upon our theoretical analysis might be by
assuming a problem setting where at most K of the arms can be played in each round. However, our
current analysis techniques do not allow us to incorporate and leverage such an assumption together
with the low-rank structure of collaborative filtering.

Implementation via Matrix Factorization: In order to efficiently solve optimization problems
(3.1) and (3.2) in large scales, we take advantage of the matrix factorization model. As a result, we
factorize Θ = PQT where P ∈ RN×R and Q ∈ RM×R, and solve the problems by optimizing
over P and Q rather than directly optimizing over Θ. Even if the problem (3.2) is not convex in the
joint variable (P, Q), it is convex in P for fixed Q and it is convex in Q for fixed P. Therefore, an
alternating minimization algorithm becomes a feasible choice to find a reasonable solution for the
least squares problem. Similarly, an alternating minimization approach is also useful to solve the
problem (3.1). We can fix an allocation X and minimize over P and Q. Then, for fixed P and Q, the
allocation X is determined through the dual decomposition mechanism described in the section 2.1.
We call the resulting algorithm LR-COMB with Matrix Factorization and present it as Algorithm 2
in the Appendix.

4 Experiments
In this section, we demonstrate the efficiency of our proposed algorithm by conducting an experi-
mental study over both synthetic and real-world datasets. The goal of our experimental evaluation is
twofold: (i) evaluate our algorithm for making online recommendations and allocations in various
market settings and (ii) understand the qualitative performance and intuition of our algorithm.

Baseline algorithms: We demonstrate the performance of our method by comparing it with baseline
algorithms. To the best of our knowledge, there are no current approaches specifically designed to
make interactive recommendations and allocations considering the capacity constraints. Therefore,
based on currently available algorithms, we construct our baseline with methods that are designed
for similar goals:

1. ACF: (Allocations with Collaborative Filtering) It solves for the least squares problem (3.2)
to estimate the mean rewards obtained from user-item allocation pairs. Then, makes the best
allocation with respect to the estimated parameters at each round.

2. CUCB: It runs the Combinatorial-UCB algorithm [13] to decide on allocations without assuming
any low-rank structure between the users and items. It views the user-item allocation pairs as arms
that have no correlation in between. In every round, it pulls some subset of the arms according to
the capacity and demand constraints.

3. ICF: It runs the Interactive Collaborative Filtering algorithm with linear UCB [6] without consid-
ering the capacity constraints. For each user, the algorithm recommend the items that it estimates
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the users will obtain the most reward. Since this method does not consider the capacities, the
recommendations do not necessarily satisfy the capacity constraints. Therefore, if an item is rec-
ommended to more users than its capacity, we assume that only a randomly chosen subset of the
assigned users are able to get the item. The users that are not able to get the item do not send any
reward feedback to the system.

4. ICF2: It is the same as ICF method described above, except that the algorithm observes a zero
reward (Rt,u,i = 0) for all the user-item allocations that were not successfully achieved. As a
result of the low rewards obtained from allocations that lead to capacity violations, the algorithm
learns to avoid violating the capacities.

Experimental setup and datasets: We use a synthetic dataset and two real world datasets to eval-
uate our approach. For the synthetic data, we generate an (approximately) low-rank random matrix
Θ∗ ∈ RN×M with entries from [0, B]. For the real-world data, we consider the following publicly
available data sets: Movielens 100k [23] which includes ratings from 943 users on 1682 movies
and the RC (Restaurant and Consumer) dataset [24] which includes ratings from 138 users on 130
restaurants. As the information of capacities are not given in the considered data, and to the best
of our knowledge to any of the publicly available recommendation datasets, we consider instan-
tiating random capacities for all items as described shortly. We consider settings with static and
time-varying capacities/demands. For the static case, we assume that all users request one item at
all iterations, and the capacity of each each remains unchanged with time. In the dynamic setting,
we allow both the demands dt and capacities ct vary with time t. At each allocation round, we
consider that each entry of dt is independently sampled from a fixed probability distribution over
{0, 1}. Therefore, while active users (with demand 1) are allocated at most one item, the inactive
users (with demand 0) do not get allocated any item. Similarly, each entry of ct is independently
sampled from a uniform distribution over {0, 1, . . . , Cmax}. At each round t, if user u is allocated
the item i, the system observes a reward with normal distribution N (θ∗ui, η

2).

Results: We summarize our results in Figure 2. Further experimental details and results are left
to Appendix G. The observations can be summed up into following points: (1) LR-COMB (our
proposed approach) is able to achieve lower regret than all other baseline methods in all experimental
settings. (2) Even though the ACF method performs slightly better than LR-COMB in the initial
rounds, it often gets stuck at high-regret allocations, and hence cannot achieve no-regret. It suffers
from large regrets in the long-term because it tries to directly exploit the information it acquired so
far without making any deliberate explorations. Therefore, we observe the significance of employing
a bandit-based approach in achieving a no-regret algorithm. (3) Since CUCB does not leverage the
low-rank structure of the parameters, it needs to sample and learn about each user-item allocation
pair separately. Hence, it takes much longer for it to learn the optimum allocations. (4) Since
ICF does not consider the capacities while making the allocations, it ends up incurring very large
regrets. Even if it is able to identify the high-reward allocation pairs via collaborative filtering, the
recommendations exceed the respective capacities of the items and we cannot obtain high rewards.
(5) One possible ad-hoc approach to mitigate the issues with ICF is to use ICF2 which can indirectly
capture the effects of the capacities since it receives zero rewards when the items are not successfully
allocated. Nevertheless, ICF2 still does not directly use the knowledge of the capacities and hence
it is still quite suboptimal. Even though it is able to show decent performance in static settings, its
performance significantly degrades when the capacities dynamically change with time.

5 Conclusion and future directions
In this paper, we have studied the setting of interactive recommendations that achieve socially opti-
mal allocations under capacity constraints. We have formulated the problem as a low-rank combi-
natorial multi-armed bandit and proposed an algorithm that enjoys low regret. Building on the ideas
founded in this work, we aim to pursue joint recommendation and pricing mechanisms that will
achieve optimal allocations in the general problem setting with users actively reacting to the recom-
mendations based on the prices determined by the provider. We believe that this is a practically-
relevant question to be resolved because it allows for design of many interesting real-world recom-
mendation applications for settings with associated markets.
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Figure 2: Instantaneous regret incurred in each round in different experimental settings. From left
to right: (1) synthetic data in a static setting with N = 800, M = 400, R = 20, (2) synthetic
data in a dynamic setting with N = 1000, M = 150, R = 20, probability of user activity 0.2,
(3) Restaurant-Customer data in a static setting, (4) Movielens 100k data in a static setting. In all
settings, the experiments are run on 10 problem instances and means are reported together with error
regions that indicate one standard deviation of uncertainty.
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A Implementation via Matrix Factorization
The following algorithm describes an efficient implementation of our Low-Rank Combinatorial
Bandit algorithm using matrix factorization. Note that converged Θ̂t and Xt are not necessarily
the optimum solution for problems (3.1) and (3.2) since the problems are not convex. However,
the alternating optimization algorithm guarantees that, in each iteration, the objective value only de-
creases for (3.2). Similarly, the objective value for (3.1) increases in each iteration of the alternating
optimization.

Algorithm 2 LR-COMB with Matrix Factorization

Require: horizon T , initial estimate Θ ∈ Rd with ‖Θ−Θ∗‖F ≤ G, parameters δ, α > 0, γ ≥ 1.
for t = 1, 2, . . . , T do

randomly initialize P̂ and Q̂
while convergence criterion not satisfied do

P̂← arg minP∈RN×R

{∑t−1
τ=1

∑
(u,i)∈Aτ (pT

uqi −Rτ,u,i)2 + γ‖PQT −Θ‖2F
}

Q̂← arg minQ∈RM×R

{∑t−1
τ=1

∑
(u,i)∈Aτ (pT

uqi −Rτ,u,i)2 + γ‖PQT −Θ‖2F
}

end while
Θ̂t ← P̂Q̂

T

X← 1N×M , P← P̂, Q← Q̂
while convergence criterion not satisfied do

while convergence criterion not satisfied do
P← arg maxP∈RN×R〈X,PQT〉 s.t. ‖PQT − Θ̂t‖2,Et ≤

√
β∗t (δ, α, γ)

Q← arg maxQ∈RM×R〈X,PQT〉 s.t. ‖PQT − Θ̂t‖2,Et ≤
√
β∗t (δ, α, γ)

end while
Θ← PQT

while convergence criterion not satisfied do
for u ∈ [N ] do

xu ← arg maxx

{
xT(θu − λ)

∣∣x ∈ {0, 1}M ,xT1M ≤ dt,u
}

end for
λ←

[
λ− α

(
ct −

∑N
u=1 xu

)]+
end while
X← [x1,x2, . . . ,xN ]T

end while
Xt ← X
Play the arms At according to Xt

Observe Rt,u,i for all (u, i) ∈ At
end for

B Relaxation of Integer Program
A traditional linear integer program (IP) in matrix form is formulated as

max
x

tTx

s.t. Ax ≤ b

x ∈ Zd+
(B.1)

This problem can be relaxed to a linear program by dropping the integral constraints (setting x ∈
Rd+). The integrality gap of an integer program is defined as the difference between the optimal
values of the integer program in (IP) and its relaxed linear program. When the vector b is integral
and the matrix A is totally unimodular (all entries are 1, 0, or -1 and every square sub-minor has
determinant of +1 or -1) then the integrality gap is zero and the solution of the relaxed linear program
is integer valued [25].
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Hence, we can solve (B.1) by instead solving the following relaxed linear program:

max
x

tTx

s.t. Ax ≤ b

x ∈ Rd+

(B.2)

For a matrix A whose rows can be partitioned into two disjoint sets C and D, the following four
conditions together are sufficient for A to be totally unimodular [26]:

1. Every entry in A is 0, +1, or −1.
2. Every column of A contains at most two non-zero entries.
3. If two non-zero entries in a column of A have the same sign, then the row of one is in C , and the

other in D .
4. If two non-zero entries in a column of A have opposite signs, then the rows of both are in C , or

both in D .

In the setting of resource allocation, we can write problem (2.1) equivalently as problem (B.1) where
x = vec(X), t = vec(Θ∗), A and b are given as

A =

[
1TN ⊗ IM
IN ⊗ 1TM

]
b =

[
ct
dt

]
(B.3)

For matrix A given in (B.3), we can set C to be the set of first M rows corresponding to the capacity
constraints, and D to be the set of remaining rows corresponding to the demand constraints. Since
this A matrix satisfies the conditions of the proposition for sets C and D, we obtain that A is totally
unimodular. Finally, since the vector b is integral and the matrix A is totally unimodular, the
integrality gap is zero.

C Structured combinatorial multi-armed bandits
For the ease of exposition, we present our proofs in the following setting with d structured arms.

We consider a CMAB (Combinatorial Multi Armed Bandit) problem setting with d arms associated
with a set of independent random rewards Rt,i for i ∈ [d] and t ∈ N. Assume that the set of
rewards {Rt,i|t ∈ N} associated with arm i are η-sub-Gaussian with mean θ∗i ∈ [0, B]. Let θ∗ =
(θ1, θ2, . . . , θd) be the vector of expectations of all arms and assume we know that it belongs to a
structure set F ⊆ Rd. We further assume that we have access to an initial rough estimate θ that
satisfies ‖θ−θ∗‖2 ≤ G (one can also set θ = 0 and let G be some number satisfying ‖θ∗‖2 ≤ G.).

At each round t, a subset of armsAt ⊆ [d] are played and the individual outcomes of arms inAt are
revealed. The total reward at round t is the sum of the rewards obtained from all arms inAt. Letting
ei ∈ Rd denote the zero-one vector with a single one at the i-th entry, define the action vector for
time t as xt =

∑
i∈At ei. Consequently, xt becomes a zero-one vector with ones at entries At and

zeros everywhere else. The problem contains a constraint that any valid action xt must belong to a
(time-varying) constraint set Xt ⊆ {0, 1}d.

The optimum allocation x∗t at time t is given by x∗t ∈ arg maxx∈Xt 〈x,θ
∗〉. We denote by Ht the

history {xτ , (Rτ,i)i∈Aτ }t−1τ=1 of observations available when choosing the next action xt. Let π be
a policy which takes the action xt using the history Ht. Then, the T period regret of a policy π is
the random variableR(T, π) =

∑T
t=1 [〈x∗t ,θ

∗〉 − 〈xt,θ∗〉].

C.1 OFU for Structured Combinatorial Bandits

We present our algorithm in the setting where the mean reward vector θ∗ belongs to a structure set
F ⊆ Rd. Then, we analyze the algorithm to establish performance guarantees.

The algorithm maintains a confidence set Ct that contains the true parameter θ∗ with high probability
and chooses the action xt according to

(xt, θ̃t) = arg max
(x,θ)∈Xt×Ct

〈x,θ〉 (C.1)
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Algorithm 3 OFU for Structured Combinatorial Bandits

Require: horizon T , initial estimate θ ∈ Rd with ‖θ − θ∗‖2 ≤ G, parameters δ, α > 0, γ ≥ 1.
for t = 1, 2, . . . , T do

Find the least squares estimate θ̂t = arg minθ∈F
{
L2,t(θ) + γ‖θ − θ‖22

}
Construct the confidence set Ct = {θ ∈ F : ‖θ − θ̂t‖2,Et ≤

√
β∗t (δ, α, γ)}

Compute the action vector xt = arg maxx∈Xt maxθ∈Ct 〈x,θ〉
Play the arms At according to xt
Observe (Rτ,i)i∈Aτ

end for

The confidence sets that we construct are centered around the regualarized least square estimates
defined next. We first let the cumulative squared prediciton error at time t be

L2,t(θ) =

t−1∑
τ=1

∑
i∈Aτ

(θi −Rτ,i)2 (C.2)

and define the regularized least squares estimate at time t as

θ̂t = arg min
θ∈F

{
L2,t(θ) + γ‖θ − θ‖22

}
(C.3)

Then, the confidence sets take the form Ct := {θ ∈ F : ‖θ − θ̂t‖2,Et ≤
√
βt} where βt is an

appropriately chosen confidence parameter, and the regularized empirical 2-norm ‖ ·‖2,Et is defined
by

‖∆‖22,Et :=

t−1∑
τ=1

∑
i∈Aτ

〈∆, ei〉2 + γ‖∆‖22 =

d∑
i=1

(nt,i + γ)(∆i)
2

where nt,i :=
∑t−1
τ=1 1{i ∈ At} denotes the number of times arm i has been pulled before time

t (excluding time t). For future reference, we also define the (non-regularized) empirical 2-norm
‖ · ‖2,Ẽt by

‖∆‖2
2,Ẽt

:=

t−1∑
τ=1

∑
i∈Aτ

〈∆, ei〉2 =

d∑
i=1

(nt,i)(∆i)
2

Note that the regularized empirical 2-norm is related to (non-regularized) empirical 2-norm as

‖∆‖22,E2
t

= ‖∆‖2
2,Ẽt

+ γ‖∆‖22

By Lemma D.3, we establish that for any θ ∈ Rd,

P

(
L2,t(θ) ≥ L2,t(θ

∗) +
1

2
‖θ∗ − θ‖2

2,Ẽt
− 4η2 log(1/δ) ,∀t ∈ N

)
≥ 1− δ (C.4)

Hence, with high probability, θ can achieve lower squared error than θ∗ only if the empirical devia-
tion ‖θ∗ − θ‖2

2,Ẽt
is less than 8η2 log(1/δ).

In order to make this property hold uniformly for all θ in a subset Ct of F , we discretize Ct at some
discretization scale α and apply a union bound for this finite discretization set. Let N (F , α, ‖ · ‖2)
denote the α-covering number of F in the 2-norm ‖ · ‖2, and let

β∗t (δ, α, γ) := 8η2 log (N (F , α, ‖ · ‖2)/δ) + 2αt
√
d
[
8B +

√
8η2 log(4dt2/δ)

]
+ 4γG2 (C.5)

Then, Lemma D.5 shows that if we set βt = β∗t (δ, α), the confidence sets Ct contain the true
parameter θ∗ for all t with high probability. Following the construction of the confidence sets, the
next step is to obtain the overall regret guarantee. As given in Corollary E.10, we find that the regret
of Algorithm 3 satisfies

R(T, π) = Õ
(√

η2d log (N (F , T−1, ‖ · ‖2))T
)

(C.6)
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Remark C.1. In the literature of linear bandits, the typical observation model is such that each
action xt results in a single reward feedback with mean 〈xt,θ∗〉 and sub-Gaussianity parameter dη2
(since each arm has a η2-sub-Gaussian reward). Therefore, that observation model can only obtain
Õ(
√
η2d2 log (N (F , T−1, ‖ · ‖2))T ) regret guarantee. However, in our setting, the observations

are sets of independent rewards {Rt,i}i∈At where each element is η2-sub-Gaussian. Due to this
richer nature of the observation model, we are able to achieve lower regret guarantees than only
observing a single cumulative reward.

D Proofs for Confidence Sets
D.1 Martingale Exponential Inequalities
We start with preliminary results on martingale exponential inequalities.

Consider a sequence of random variables (Zn)n∈N adapted to the filtration (Hn)n∈N. Assume
E[exp(λZi)] is finite for all λ. Define the conditional mean µi = E[Zi|Hi−1], and define the
conditional cumulant generating function of the centered random variable [Zi − µi] by ψi(λ) :=
logE[exp(λ[Zi − µi])|Hi−1]. Let

Mn(λ) = exp

{
n∑
i=1

λ[Zi − µi]− ψi(λ)

}
Lemma D.1. (Mn(λ))n∈N is a martingale with respect to the filtration (Hn)n∈N, andE[Mn(λ)] =
1.

Proof. By definition, we have

E[M1(λ)|H0] = E[exp{λ[Z1 − µ1]− ψ1(λ)}|H0] = 1

Then, for any n ≥ 2,

E[Mn(λ)|Hn−1] = E[Mn−1(λ) exp{λ[Zn − µn]− ψn(λ)}|Hn−1]

= Mn−1(λ)E[exp{λ[Zn − µn]− ψn(λ)}|Hn−1]

= Mn−1(λ)

since Mn−1(λ) is a measurable function of the filtrationHn−1.

Lemma D.2. For all x ≥ 0 and λ ≥ 0,

P

(
n∑
i=1

λZi ≤ x+

n∑
i=1

[λµi + ψi(λ)] ,∀t ∈ N

)
≥ 1− e−x

Proof. For any λ, (Mn(λ))n∈N is a martingale with respect to (Hn)n∈N and E[Mn(λ)] = 1 by
Lemma D.1. For arbitrary x ≥ 0, define τx = inf{n ≥ 0|Mn(λ) ≥ x} and note that τx is a
stopping time corresponding to the first time Mn crosses the boundary x. Since τ is a stopping time
with respect to (Hn)n∈N, we have E[Mτx∧n(λ)] = 1. Then, by Markov’s inequality

xP(Mτx∧n(λ) ≥ x) ≤ E[Mτx∧n(λ)] = 1

Noting that the event {Mτx∧n(λ) ≥ x} =
⋃n
k=1{Mk(λ) ≥ x}, we have

P

(
n⋃
k=1

{Mk(λ) ≥ x}

)
≤ 1

x

Taking the limit as n → ∞, and applying monotone convergence theorem shows that
P (
⋃∞
k=1{Mk(λ) ≥ x}) ≤ 1

x or P (
⋃∞
k=1{Mk(λ) ≥ ex}) ≤ e−x. Then, by definition of Mk(λ),

we conclude

P

( ∞⋃
k=1

{
n∑
i=1

λ[Zi − µi]− ψi(λ) ≥ x

})
≤ e−x

16



D.2 Proofs for the construction of confidence sets
Lemma D.3. For any δ > 0 and θ ∈ Rd,

P

(
L2,t(θ) ≥ L2,t(θ

∗) +
1

2
‖θ∗ − θ‖2

2,Ẽt
− 4η2 log(1/δ) ,∀t ∈ N

)
≥ 1− δ (D.1)

Proof. Let Ht−1 be the σ-algebra generated by (Ht,At) and let H0 = σ(∅,Ω). Then, define
εt,i := Rt,i − 〈Xt,i,θ

∗〉 for all t ∈ N and i ∈ At. By previous assumptions, E[εt,i|Ht−1] = 0 and

E[exp(λεt,u)|Ht−1] ≤ exp
(
λ2η2

2

)
for all t.

Define Zt,i = (Rt,i − 〈Xt,i,θ
∗〉)2 − (Rt,i − 〈Xt,i,θ〉)2. Then, we have

Zt,i = −(〈Xt,i,θ〉 − 〈Xt,i,θ
∗〉)2 + 2εt,i(〈Xt,i,θ〉 − 〈Xt,i,θ

∗〉)
= −〈Xt,i,θ − θ∗〉2 + 2εt,i〈Xt,i,θ − θ∗〉

Therefore, the conditional mean and conditional cumulant generating function satisfy
µt,i := E[Zt,i|Ht−1] = −〈Xt,i,θ − θ∗〉2

ψt(λ) := logE[exp(λ[Zt,i − µt,i])|Ht−1]

= logE[exp(2λ〈Xt,i,θ − θ∗〉εt,i)|Ht−1]

≤ (2λ〈Xt,i,θ − θ∗〉)2η2

2

Applying Lemma D.2 shows that for all x ≥ 0 and λ ≥ 0,

P

(
t−1∑
τ=1

∑
u∈Aτ

Zτ,i ≤
x

λ
+

t−1∑
τ=1

∑
u∈Aτ

〈Xτ,i,θ − θ∗〉2(2λη2 − 1) ,∀t ∈ N

)
≥ 1− e−x

Note that we have
∑t−1
τ=1

∑
u∈Aτ Zτ,i = L2,t(θ

∗)− L2,t(θ),

and
∑t−1
τ=1

∑
u∈Aτ 〈Xτ,i,θ − θ∗〉2 = ‖θ∗ − θ‖2

2,Ẽt
.

Then, choosing λ = 1
4η2 and x = log 1

δ gives

P

(
L2,t(θ) ≥ L2,t(θ

∗) +
1

2
‖θ∗ − θ‖2

2,Ẽt
− 4η2 log(1/δ) ,∀t ∈ N

)
≥ 1− δ

Lemma D.4. If θα ∈ Fα satisfies ‖θ − θα‖2 ≤ α, then with probability at least 1− δ,∣∣∣∣12‖θ∗ − θα‖2
2,Ẽt
− 1

2
‖θ∗ − θ‖2

2,Ẽt
+ L2,t(θ)− L2,t(θ

α)

∣∣∣∣ ≤ αtd [8B +
√

8η2 log(4dt2/δ)
]

(D.2)

Proof. Since any two θ,θα ∈ F satisfy ‖θ − θα‖2 ≤
√
dB, it is enough to consider α ≤

√
dB.

We find
d∑
i=1

|〈θ, ei〉2 − 〈θα, ei〉2| ≤ max
‖∆‖2≤α

{
d∑
i=1

∣∣θ2i − (θi + ∆i)
2
∣∣}

= max
‖∆‖2≤α

{
d∑
i=1

∣∣2θi∆i + ∆2
i

∣∣}

≤ max
‖∆‖2≤α

{
2

d∑
i=1

|θi∆i|+
d∑
i=1

∆2
i

}
≤ max
‖∆‖2≤α

{
2B‖∆‖1 + ‖∆‖22

}
≤ 2B

√
dα+ α2
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Therefore, it implies

d∑
i=1

|〈θ − θ∗, ei〉2 − 〈θα − θ∗, ei〉2| =
d∑
i=1

∣∣〈θ, ei〉2 − 〈θα, ei〉2 + 2〈θ∗, ei〉〈θα − θ, ei〉
∣∣

≤ 2B
√
dα+ α2 + 2B‖θ − θα‖1

≤ 4B
√
dα+ α2

Similarly, for any t, we have

d∑
i=1

| (Rt,i − 〈θ, ei〉)2 − (Rt,i − 〈θα, ei〉)2 | =
d∑
i=1

∣∣2Rt,i〈θα − θ, ei〉+ 〈θ, ei〉2 − 〈θα, ei〉2
∣∣

≤ 2

d∑
i=1

|Rt,i| |〈θα − θ, ei〉|+ 2B
√
dα+ α2

≤ 2‖θα − θ‖∞
d∑
i=1

|Rt,i|+ 2B
√
dα+ α2

≤ 2α

d∑
i=1

|Rt,i|+ 2B
√
dα+ α2

Summing over t and noting that At ⊆ [d], the left hand side of (D.2) is bounded by

t−1∑
τ=1

(
1

2

[
4B
√
dα+ α2

]
+ 2α

d∑
i=1

|Rt,i|+ 2B
√
dα+ α2

)
≤ α

t−1∑
τ=1

(
6B
√
d+ 2

d∑
i=1

|Rτ,i|

)

Because ετ,i is η-sub-Gaussian, P
(
|ετ,i| >

√
2η2 log(2/δ)

)
≤ δ. By a union bound,

P
(
∃τ, i s.t. |ετ,i| >

√
2η2 log(4dτ2/δ)

)
≤ δd

2

∑∞
τ=1

1
dτ2 ≤ δ. Since |Rτ,i| ≤ B + |ετ,i|, we

have |Rτ,i| ≤ B +
√

2η2 log(4dτ2/δ) with probability at least 1− δ. Consequently, the bound for
the discretization error becomes

αtd
[
8B + 2

√
2η2 log(4dt2/δ)

]

Lemma D.5. For any δ > 0, α > 0 and γ > 0, if

Ct = {θ ∈ F : ‖θ − θ̂t‖2,Et ≤
√
β∗t (δ, α, γ)} (D.3)

for all t ∈ N, then
P (θ∗ ∈ Ct ,∀t ∈ N) ≥ 1− 2δ (D.4)

Proof. Let Fα ⊂ F be an α-cover of F in the 2-norm so that for any θ ∈ F , there exists θα ∈ Fα
such that ‖θ − θα‖2 ≤ α. By a union bound applied to Lemma D.3, with probability at least 1− δ,

L2,t(θ
α)− L2,t(θ

∗) ≥ 1

2
‖θ∗ − θα‖2

2,Ẽt
− 4η2 log(|Fα|/δ) ,∀θα ∈ Fα, t ∈ N

Therefore, with probability at least 1− δ, for all θ ∈ F , t ∈ N,

L2,t(θ)− L2,t(θ
∗) ≥1

2
‖θ∗ − θ‖2

2,Ẽt
− 4η2 log(|Fα|/δ)

+ min
θα∈Fα

{
1

2
‖θ∗ − θα‖2

2,Ẽt
− 1

2
‖θ∗ − θ‖2

2,Ẽt
+ L2,t(θ)− L2,t(θ

α)

}
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By Lemma D.4, with probability at least 1− 2δ,

L2,t(θ)− L2,t(θ
∗) ≥ 1

2
‖θ∗ − θ‖2

2,Ẽt
−Dt

where Dt := 4η2 log(|Fα|/δ) + αtd
[
8B +

√
8η2 log(4dt2/δ)

]
.

Adding the regularization terms to both sides, we obtain

L2,t(θ) +γ‖θ−θ‖22−L2,t(θ
∗)−γ‖θ∗−θ‖22 ≥

1

2
‖θ∗−θ‖2

2,Ẽt
+γ‖θ−θ‖22−Dt−γ‖θ∗−θ‖22

Note the definition of the least square estimate θ̂t = arg minθ∈F
{
L2,t(θ) + γ‖θ − θ‖22

}
. By

letting θ = θ̂t, the left hand side becomes non-positive, and hence

1

2
‖θ∗ − θ̂t‖22,Ẽt ≤ Dt + γ

(
‖θ∗ − θ‖22 − ‖θ̂t − θ‖22

)
Then,

1

2
‖θ∗ − θ̂t‖22,Ẽt + γ

(
‖θ̂t − θ‖22 + ‖θ∗ − θ‖22

)
≤ Dt + 2γ‖θ∗ − θ‖22

By triangle inequality we have ‖θ̂t−θ‖2 +‖θ∗−θ‖2 ≥ ‖θ∗− θ̂t‖2. Taking squares on both sides,
we obtain ‖θ̂t−θ‖22+‖θ∗−θ‖22 ≥ 1

2‖θ
∗− θ̂t‖22. Then, noting that ‖∆‖2

2,E2
t

= ‖∆‖2
2,Ẽt

+γ‖∆‖22,
we have

1

2
‖θ∗ − θ̂t‖22,Et ≤ Dt + 2γ‖θ∗ − θ‖22

Lastly, using the inequality ‖θ∗ − θ‖22 ≤ G2,

‖θ∗ − θ̂t‖22,Et ≤ 8η2 log(|Fα|/δ) + 2αtd
[
8B +

√
8η2 log(4dt2/δ)

]
+ 4γG2

Taking the infimum over the size of α-covers, we obtain the final result.

E Proofs for Regret Bounds
Throughout this section we will use the shorthand βt = β∗t (δ, α, γ).

We start with the definitions of weighted inner product and norms.
Definition E.1. For a symmetric positive definite matrix W ∈ Rd×d, define

• W-inner product of two vectors x,y ∈ Rd as 〈x,y〉W := 〈Wx,y〉

• W-norm of a vector x ∈ Rd as ‖x‖W :=
√
〈x,x〉W.

Then, the regularized empirical 2-norm of a vector z ∈ Rd can be written as

‖z‖2,Et = ‖z‖At (E.1)

where At is a diagonal matrix with diagonal entries {(nt,1 + γ), (nt,2 + γ), . . . , (nt,d + γ)}.

Recall that nt,i =
∑t−1
τ=1 1{i ∈ At} denotes the number of times arm i has been pulled before time

t (excluding time t).

Lemma E.2. Let x ∈ X and Θ ∈ Ft. Then,

|〈θ − θ̂
LS
t ,x〉| ≤ w

√
βt (E.2)

where w = ‖x‖A−1
t

is the "confidence width" of an action x at time t.
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Proof. Let ∆ = θ − θ̂
LS
t . Then,

|〈∆,x〉| = |∆Tx|

= |∆TA
1/2
t A

−1/2
t x|

= |(A1/2
t ∆)TA

−1/2
t x|

≤ ‖A1/2
t ∆‖‖A−1/2t x‖

= ‖∆‖At
‖x‖A−1

t

= w‖∆‖2,Et
≤ w

√
βt

Define the widths of the allocations as

wt := ‖xt‖A−1
t

and wt,i := ‖ei‖A−1
t

(E.3)

Lemma E.3. For any t ∈ N, we have the identity

w2
t =

∑
i∈At

w2
t,i

Proof.

w2
t = 〈xt,xt〉A−1

t

=

〈
A−1t

∑
i∈At

ei,
∑
i∈At

ei

〉
=
∑
i∈At

∑
j∈At

〈
A−1t ei, ej

〉
=
∑
i∈At

〈
A−1t ei, ei

〉
=
∑
i∈At

w2
t,i

where the penultimate step follows because
〈
A−1t ei, ej

〉
= 0 for i 6= j.

Lemma E.4. Let the regret at time t be rt = 〈x∗t ,θ
∗〉 − 〈xt,θ∗〉. If θ∗ ∈ Ct, then

rt ≤ 2wt
√
βt

Proof. By the choice of (xt, θ̃t), we have

〈xt, θ̃t〉 = max
(x,θ)∈Xt×Ct

〈x,θ〉 ≥ 〈x∗t ,θ
∗〉

where the inequality uses θ∗ ∈ Ct. Hence,

rt = 〈x∗t ,θ
∗〉 − 〈xt,θ∗〉

≤ 〈xt, θ̃t − θ∗〉

= 〈xt, θ̃t − θ̂
LS
t 〉+ 〈xt, θ̂

LS
t − θ∗〉

≤ 2wt
√
βt

where the last step follows from Lemma E.2.
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Next, we show that the confidence widths do not grow too fast.
Lemma E.5. For every t,

log det At+1 = d log γ +

t∑
τ=1

∑
i∈Aτ

log(1 + w2
τ,i) (E.4)

Proof. By the definition of At, we have

det At+1 = det

(
At +

∑
i∈At

eie
T
i

)

= det

(
A

1/2
t

(
I + A

−1/2
t

(∑
i∈At

eie
T
i

)
A
−1/2
t

)
A

1/2
t

)

= det(At) det

(
I +

∑
i∈At

A
−1/2
t eie

T
iA
−1/2
t

)

Each A
−1/2
t eie

T
iA
−1/2
t term has zeros everywhere except one entry on the diagonal and that non-

zero entry is equal to w2
t,i. Furthermore, the location of the non-zero entry is different in for each

term. Hence,

det

(
I +

∑
i∈At

A
−1/2
t eie

T
iA
−1/2
t

)
=
∏
i∈At

(1 + w2
t,i)

Therefore, we have
log det At+1 = log det At +

∑
i∈At

log(1 + w2
t,i)

Since A1 = γI, we have log det A1 = d log γ and the result follows by induction.

Lemma E.6. For all t, log det At ≤ d log(t+ γ − 1).

Proof. Noting that At is a diagonal matrix with diagonals (nt,i + γ),

trace At = dγ +

d∑
i=1

nt,i

= dγ + d(t− 1)

= d(t+ γ − 1)

Now, recall that trace At equals the sum of the eigenvalues of At. On the other hand, det(At)
equals the product of the eigenvalues. Since At is positive definite, its eigenvalues are all positive.
Subject to these constraints, det(At) is maximized when all the eigenvalues are equal; the desired
bound follows.

Lemma E.7. Let γ ≥ 1. Then, for all t, we have
t∑

τ=1

∑
i∈Aτ

w2
τ,i ≤ 2d log

(
1 +

t

γ

)

Proof. Note that 0 ≤ w2
τ,i ≤ 1, if γ ≥ 1. Using the inequality y ≤ 2 log(1 + y) for 0 ≤ y ≤ 1, we

have
t∑

τ=1

∑
i∈Aτ

w2
τ,i ≤ 2

t∑
τ=1

∑
i∈Aτ

log(1 + w2
τ,i)

= 2 log det At+1 − 2d log γ

≤ 2d log

(
1 +

t

γ

)
where the last two lines follow from Lemmas E.5 and E.6 respectively.
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Lemma E.8. Let the instantaneous regret at time t be rt = 〈x∗t ,θ
∗〉 − 〈xt,θ∗〉. If γ ≥ 1 and

θ∗ ∈ Ct for all t ≤ T , then
T∑
t=1

r2t ≤ 8βT d log

(
1 +

T

γ

)

Proof. Assuming that θ∗ ∈ Ct for all t ≤ T ,

T∑
t=1

r2t ≤
T∑
t=1

4w2
t βt

≤ 4βT

T∑
t=1

w2
t

= 4βT

T∑
t=1

∑
i∈At

w2
t,i

≤ 8βT d log

(
1 +

T

γ

)
where the first step follows from Lemma E.4, second step follows from the definition of βt, third
step uses the identity given in Lemma E.3 and the last step is due to Lemma E.7.

Theorem E.9. Let γ ≥ 1. Then, with probability at least 1− 2δ, the T period regret is bounded by

R(T, π) ≤

√
8dβ∗T (δ, α, γ)T log

(
1 +

T

γ

)
where

β∗T (δ, α, γ) = 8η2 log (N (F , α, ‖ · ‖2)/δ) + 2αdT
(

8B +
√

8η2 log(4dT 2/δ)
)

+ 4γG2 (E.5)

Proof. Assuming that θ∗ ∈ Ct for all t ≤ T ,

R(T, π) =

T∑
t=1

rt

≤

(
T

T∑
t=1

r2t

)1/2

≤
(

8dβTT log

(
1 +

T

γ

))1/2

where the last step follows from Lemma E.8. Then, by Lemma D.5, θ∗ ∈ Ct for all t ≤ T with
probability at least 1− 2δ. Therefore, the bound holds true with probability at least 1− 2δ.

Corollary E.10. Letting δ = O((dT )−1), α = O((dT )−1) and γ = 1 results in a regret bound that
satisfies

R(T, π) = Õ
(√

η2d log (N (F , T−1, ‖ · ‖2))T
)

(E.6)

Proof. By Theorem E.9, with probability 1,

R(T, π) ≤ (1− δ)

√
8dβ∗T (δ, α, γ)T log

(
1 +

T

γ

)
+ 2δBdT
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Letting δ = O(T−1), α = O = (T−1) and γ = 1,

R(T, π) = Õ
(√

dβ∗T (T, T−1, 1)T

)
Noting that β∗T (T, T−1, 1) = Õ

(
η2 log

(
N (F , T−1, ‖ · ‖2)

))
, the proof is complete.

F Proofs for OFU-based Allocations
F.1 Proof of Theorem 3.2

In the allocation problem, the mean reward of the arms are given in the matrix Θ ∈ RN×M . Consider
setting θ = vec(Θ) as the mean reward vector for the problem described in Appendix Section C.
Noting that d = NM and ‖ · ‖F = ‖vec(·)‖2, the proof becomes a direct extension of Theorem E.9.

F.2 Proof of Theorem 3.3
The proof is direct extension of Corollary E.10 where the covering number is replaced with the
following upper bound given for the choice of L defined in equation (3.4). We provide the upper
bound for the covering number of L in the following lemma.

Lemma F.1 (Covering number for low-rank matrices). The covering number of L given in (3.4)
obeys

logN (L, α, ‖ · ‖F) ≤ (N +M + 1)R log

(
9B
√
NM

α

)
(F.1)

Proof. This proof is modified from [27]. Let S = {Θ ∈ RN×M : rank(Θ) ≤ R, ‖Θ‖F ≤ 1}. We
will first show that there exists an ε-net Sε for the Frobenious norm obeying

|Sε| ≤ (9/ε)
(N+M+1)R

For any Θ ∈ S, singular value decomposition gives Θ = UΣVT, where ‖Σ‖F ≤ 1. We will
construct an ε-net for S by covering the set of permisible U, Σ and V. Let D be the set of diagonal
matrices with nonnegative diagonal entries and Frobenious norm less than or equal to one. We take
Dε/3 be an ε/3-net for D with |Dε/3| ≤ (9/ε)R. Next, let ON,R = {U ∈ RN×R : UTU = I}. To
cover ON,R, we use the ‖ · ‖1,2 norm defined as

‖U‖1,2 = max
i
‖ui‖`2

where ui denotes the ith column of U. Let QN,R = {U ∈ RN,R : ‖U‖1,2 ≤ 1}. It is easy to
see that ON,R ⊂ QN,R since the columns of an orthogonal matrix are unit normed. We see that
there is an ε/3-net Oε/3N,R for ON,R obeying |Oε/3N,R| ≤ (9/ε)NR. Similarly, let PM,R = {V ∈
RM×R : VTV = I}. By the same argument, there is an ε/3-net Pε/3M,R for PM,R obeying |Pε/3M,R| ≤
(9/ε)MR. We now let Sε = {ŪΣ̄V̄

T
: Ū ∈ Oε/3N,R, V̄ ∈ P

ε/3
M,R, Σ̄ ∈ Dε/3}, and remark |Sε| ≤

|Oε/3N,R||P
ε/3
M,R||Dε/3| ≤ (9/ε)(N+M+1)R. It remains to show that for all Θ ∈ S, there exists Θ̄ ∈ Sε

with ‖Θ− Θ̄‖F ≤ ε.

Fix Θ ∈ S and decompose it as Θ = UΣVT. Then, there exists Θ̄ = ŪΣ̄V̄
T ∈ Sε with

Ū ∈ Oε/3N,R, V̄ ∈ Pε/3M,R, Σ̄ ∈ Dε/3 satisfying ‖U − Ū‖1,2 ≤ ε/3, ‖V − V̄‖1,2 ≤ ε/3 and
‖Σ− Σ̄‖F ≤ ε/3. This gives

‖Θ− Θ̄‖F = ‖UΣVT − ŪΣ̄V̄
T‖F

= ‖UΣVT − ŪΣVT + ŪΣVT − ŪΣ̄VT + ŪΣ̄VT − ŪΣ̄V̄
T‖F

≤ ‖(U− Ū)ΣVT‖F + ‖Ū(Σ− Σ̄)VT‖F + ‖ŪΣ̄(V − V̄)T‖F
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For the first term, since V is an orthogonal matrix,

‖(U− Ū)ΣVT‖2F = ‖(U− Ū)Σ‖2F
≤ ‖Σ‖2F‖U− Ū‖21,2 ≤ (ε/3)2

By the same argument, ‖ŪΣ̄(V− V̄)T‖F ≤ ε/3 as well. Lastly, ‖Ū(Σ− Σ̄)VT‖F = ‖Σ− Σ̄‖F ≤
ε/3. Therefore, ‖Θ − Θ̄‖F ≤ ε, showing that Sε is an ε-net for S with respect to the Frobenious
norm.

Next, we will construct an α-net for L given in equation 3.4. Let κ = B
√
NM . We start by noting

that for all Θ ∈ L, the Frobenious norm obeys ‖Θ‖F ≤ κ. Then, define X = 1
κΘ ∈ S and

Lα :=
{
κX̄ : X̄ ∈ Sε

}
. We previously showed that for any X ∈ S, there exists X̄ ∈ Sε such that

‖X− X̄‖F ≤ ε. Therefore, for any Θ ∈ L, there exists Θ̄ = κX̄ ∈ Lα such that ‖Θ− Θ̄‖F ≤ κε.
Setting ε = α/κ, we obtain that Lα is an α-net for L with respect to the Frobenious norm. Finally,
the size of Lα obeys

|Lα| = |Sα/κ| ≤ (9κ/α)
(N+M+1)R

This completes the proof.

G Additional Experimental Details
All experiments are implemented in Python and carried out on a machine with 2.3GHz 8-core Intel
Core i9 CPU and 16GB of RAM. We solve the allocation integer program (2.1) using large-scale
mixed integer programming (MIP) solver packages to have efficient computations.

Parameter setup:

• In synthetic data, Θ∗ is scaled such that B = 10.

• Standard deviation of the rewards: η = 1.

• In the static setting, dt,u = 1 for all u ∈ [N ].

• In the dynamic setting, dt,u = 1 with probability 0.2, 0 otherwise, independently for each u ∈ [N ].

• Cmax = ceil
(

3
M

∑N
u=1 dt,u

)
.

• ct,i are uniformly sampled over {1, . . . , Cmax} independently for each t ∈ [T ] and i ∈ [M ].

To complement our discussion on the importance of capacity-aware recommendations, Figure 3
shows the effects of having stricter capacity constraints. When Cmax is low (the capacity constraints
are stricter), we see that the performance gap between our proposed method and ICF2 is larger.
Therefore, it is more crucial to employ capacity-aware mechanisms in settings with tighter capacity
constraints.

Figure 3: Normalized cumulative reward obtained in T = 300 rounds for different choices of Cmax
(normalized by the cumulative reward of optimal allocations). Synthetic data in a static setting
with N = 400, M = 200, R = 10. For each data point, the experiments are run on 20 problem
instances and means are reported together with error regions that indicate one standard deviation of
uncertainty.
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In Figures 4, 5, 6 and 7, we provide detailed results for different experimental settings described
in Section 4. Reward indicates the instantaneous reward obtained in each iteration, regret is the
gap between the reward of the optimum allocation and the allocation achieved by the algorithm.
Cumulative regret (defined in (2.3)) is the cumulative sum of instantaneous regrets up to iteration t.
The average cumulative regret is obtained by normalizing the cumulative regret with 1/t.

Figure 4: Experimental results for synthetic data in a static setting with N = 800, M = 400,
R = 20. The experiments are run on 10 problem instances and means are reported together with
error regions that indicate one standard deviation of uncertainty.

Figure 5: Experimental results for synthetic data in a dynamic setting with N = 1000, M = 150,
R = 20, probability of activity 0.2. The experiments are run on 10 problem instances and means
are reported together with error regions that indicate one standard deviation of uncertainty.

Figure 6: Experimental results for Restaurant-Customer data in a static setting. The experiments are
run on 10 problem instances and means are reported together with error regions that indicate one
standard deviation of uncertainty.
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Figure 7: Experimental results for MovieLens 100k data in a static setting. The experiments are
run on 10 problem instances and means are reported together with error regions that indicate one
standard deviation of uncertainty.
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