
Utility-based Resource Allocation and Pricing for Serverless
Computing with Dependencies

Vipul Gupta1 Soham Phade2 Yigit Efe Erginbas3 Thomas Courtade3

Kannan Ramchandran3

1Coinbase 2Wayve 3UC Berkeley

Abstract

Serverless computing platforms currently employ static pricing schemes that often lead to inefficien-
cies. To address this, our prior work introduced a novel market-based scheduler that utilizes user utility
functions to optimize resource allocation and maximize social welfare based on delay-sensitivity. This
paper extends that framework to tackle a critical challenge in cloud computing: the efficient scheduling
of jobs with inter-dependencies. We propose an enhanced scheduler capable of allocating resources for
serverless computing tasks with finish-to-start dependencies, ensuring that the overall system utility is
maximized while respecting these constraints. Our approach retains the dynamic pricing mechanism
derived from the dual problem and the decentralized feedback mechanisms for handling private user
information, now incorporating the complexities introduced by job dependencies. Simulations demon-
strate that our extended framework can effectively manage dependent tasks, track market demand, and
achieve significantly higher social welfare compared to existing schemes that do not account for these
dependencies.

1 Introduction

Resource allocation in cloud computing environments is a critical area of research, aiming to efficiently
manage shared resources to maximize system performance and user satisfaction. Various scheduling frame-
works have been proposed to address this challenge, often considering factors such as user preferences and
job characteristics. In our prior work, we introduced a novel decentralized framework for resource allocation
in multi-agent scheduling scenarios, focusing on maximizing social welfare through a dynamic multi-tier
pricing scheme that incentivizes users to bid optimally based on their delay-sensitivity. This framework,
detailed in the introduction provided below, effectively addressed the complexities of scheduling delay-
sensitive jobs, particularly within the burgeoning field of serverless computing.

Building upon this foundation, the current paper extends our previous work by incorporating the crucial
aspect of job inter-dependencies. In many real-world cloud computing systems, jobs are not isolated tasks
but rather form complex workflows with dependencies, where the execution of one job can be contingent
on the completion of others. These dependencies significantly impact scheduling decisions and resource
allocation strategies. To address this, we introduce an extension of our resource allocation and pricing
framework to handle finish-to-start relationships between multiple pairs of jobs. By representing the depen-
dency structure as a directed acyclic graph (DAG), we can explicitly model the constraints imposed by these
inter-dependencies within our optimization problem. This extension allows for a more realistic and compre-
hensive approach to resource allocation in cloud environments where job dependencies are prevalent.

1



2 Problem Formulation

This paper extends the resource allocation framework for multi-agent scheduling in serverless computing
environments that we introduced in our prior work. In that work, we focused on optimizing resource al-
location based on user utility functions that capture their delay-sensitivity for independent jobs. Building
upon this foundation, the current paper incorporates the crucial aspect of job inter-dependencies, specifically
focusing on finish-to-start relationships.

Serverless (also called Function-as-a-service) as a cloud computing framework is ideal for “simple” jobs
where each user submits a function to be executed on serverless workers. Each user can request for a job
comprising of any number of executions of her function at any time, which could be triggered due to external
events. For example, the users can provide the conditions under which they require the execution of a certain
number of instances of their function. The users provide these trigger event details along with their function
submissions. Our goal here is to design an efficient real-time job scheduler to allocate resources to the jobs
that have been triggered across multiple users and a corresponding pricing scheme for the cloud provider.

We envision a job scheduler that operates periodically and schedules the jobs that are currently in its
queue. This queue consists of all the jobs that have been triggered and are ready to be executed but have not
been scheduled yet. Thus, it consists of previously unscheduled jobs (complete or partial) plus any new jobs
that arrived since the previous run of the scheduler.

Our model assumes that the user derives utility only when her job is completed, that is, when all the
functions comprising her job are executed where each function execution requires one serverless worker1.
Let the respective delay-sensitivity for user i be captured by a utility function Ui : [0,∞) → R. That is,
user i obtains utility Ui(τ) if her job is completed at time instant τ(> 0), where Ui(·) is non-increasing. Let
Ji denote the number of function executions needed to complete the job of user i. We call this the size of
user i’s job. For example, it could be a single function instance in which case Ji = 1 or a batch job of size
Ji > 1.

We think of the scheduler as allocating resources to the users in different service tiers based on their
execution times—some jobs will be scheduled for immediate execution, whereas others will be scheduled
for execution at later times in the future. The jobs that are not scheduled will remain in the queue to be
scheduled by the scheduler at later operations. Note that the jobs that have been scheduled for execution at
a future point are removed from the queue. Let T be the maximum number of service tiers offered by the
cloud provider, and let the t-th tier be characterized by the end time of this tier given by τt. This is a useful
feature because it allows our scheduler to plan over longer time horizons with a limited number of tiers. The
pricing for these different tiers of service should ideally decrease as the job completion time increases. We
refer to the intervening time between the adjacent tier end times as service intervals and we let Mt be the
constraint on the number of machines available for the scheduler to allocate resources in service interval t.

System Problem without Dependencies: In our prior work, at each scheduler implementation, we
assumed access to unscheduled jobs (size Ji for user i), their utility functions Ui,t := Ui(τt), and machine
availability Mt. We formulated the system problem SYS to maximize the sum utility as follows:

SYS

Maximize
xi,t≥0

n∑
i=1

Ui,Ti

1Without loss of generality, we make a simplifying assumption that all users’ functions are identical in terms of computation
costs. Thus, the pricing scheme in a given tier charges users only on the basis of their job sizes.

2



subject to
N∑
i=1

xi,t ≤ Mt, ∀ t ∈ [T ], and (2.1)

Ti = min{t ∈ [T ] :
t∑

s=1

xi,s ≥ Ji}, ∀ i ∈ [N ]. (2.2)

In this paper, we extend the aforementioned framework to account for finish-to-start dependencies be-
tween jobs. We represent the dependency structure as a directed acyclic graph (DAG) G = ([N ], E), where
[N ] is the set of jobs and a directed edge (i, j) ∈ E indicates that job j can only start after job i is completed.

To incorporate these dependencies into our system problem, we define the starting time Si and comple-
tion time Ti for each job i. The completion time Ti of job i is defined as

Ti := min{t ∈ [T ] :
t∑

s=1

xi,s ≥ Ji},∀i ∈ [N ],

and the starting time is defined as

Si := min{t ∈ [T ] :
t∑

s=1

xi,s > 0},∀i ∈ [N ]. (2.3)

System Problem with Dependencies: The system problem is now modified to maximize the total utility
while respecting both resource capacity constraints and job dependencies:

SYS-DEP

Maximize
xi,t≥0

N∑
i=1

Ui,Ti

subject to
N∑
i=1

xi,t ≤ Mt, ∀t ∈ [T ]

Ti = min{t ∈ [T ] :

t∑
s=1

xi,s ≥ Ji},∀i ∈ [N ]

Si = min{t ∈ [T ] :

t∑
s=1

xi,s > 0}, ∀i ∈ [N ]

Ti < Sj , ∀(i, j) ∈ E

We can formulate an equivalent ILP problem. Using the utility increments ui,t := Ui,t − Ui,t+1 and
introducing binary indicator variables yi,t (job i completed by time t) and zi,t (job i started by time t), the

3



problem becomes:

SYS-DEP-ILP

Maximize
xi,t≥0,yi,t∈{0,1},zi,t∈{0,1}

N∑
i=1

T∑
t=1

ui,tyi,t

subject to
N∑
i=1

xi,t ≤ Mt, ∀t ∈ [T ]

yi,t ≤
∑t

s=1 xi,s
Ji

,∀i ∈ [N ], t ∈ [T ]∑t
s=1 xi,s
Ji

≤ zi,t, ∀i ∈ [N ], t ∈ [T ]

yi,t−1 ≥ zj,t, ∀(i, j) ∈ E, t ∈ [T ]

with the convention that yi,0 = 0.

3 Analyzing SYS-DEP-ILP

Since the problems SYS-DEP and SYS-DEP-ILP are NP-hard in general, we consider an approximation
by relaxing the integer constraints. Accordingly, we replace the indicator constraints yi,t ∈ {0, 1} by
0 ≤ yi,t ≤ 1 and zi,t ∈ {0, 1} by 0 ≤ zi,t ≤ 1.

We note that the objective value for the relaxed problem only depends on yi,t values. Therefore, for any
feasible solution, there exists an equivalent feasible solution (with the same objective value) that satisfies
yi,t =

∑t
s=1 xi,s/Ji. Hence, we can substitute yi,t =

∑t
s=1 xi,s/Ji in the objective function and depen-

dency constraints. Note that we also need to satisfy
∑T

t=1 xi,t ≤ Ji since 0 ≤ yi,t ≤ 1. Furthermore, by
reducing zi,t values, we can also find an equivalent feasible solution that satisfies zi,t =

∑t
s=1 xi,s/Ji. So,

we can substitute zi,t =
∑t

s=1 xi,s/Ji in the objective function and dependency constraints.

Using the definition of utility per unit Fi,t = Ui,t/Ji, we obtain the relaxed problem

SYS-DEP-LP

Maximize
xi,t≥0

N∑
i=1

T∑
t=1

xi,tFi,t

subject to
T∑
t=1

xi,t ≤ Ji, ∀i ∈ [N ]

N∑
i=1

xi,t ≤ Mt, ∀t ∈ [T ]∑t−1
s=1 xi,s
Ji

≥
∑t

s=1 xj,s
Jj

,∀(i, j) ∈ E, t ∈ [T ].

where empty sums (sums with no summands) are assumed to be equal to 0.

In order to formulate a decentralized algorithm that will solve this problem, we continue with writing

4



the Lagrangian corresponding to the optimization problem SYS-DEP-LP:

L(x,λ,µ,ρ) =
N∑
i=1

T∑
t=1

xitFit +
N∑
i=1

λi

(
Ji −

T∑
t=1

xit

)

+
T∑
t=1

µt

(
Mt −

N∑
i=1

xit

)

+
∑

(i,j)∈E

T∑
t=1

ρtij

(∑t−1
s=1 xis
Ji

−
∑t

s=1 xj,s
Jj

) (3.1)

where x = [xit], λ = [λi], µ = [µt], ρ = [ρtij ]. Here, x represents the primal variables that correspond
to the number of function calls made for each user at each time. λ, µ and ρ are Lagrangian multipliers
and they correspond to the dual variables for the problem. By manipulating the given expression for the
Lagrangian, we can write it as

L(x,λ,µ,ρ) =

N∑
i=1

T∑
t=1

xitFit +

N∑
i=1

λi

(
Ji −

T∑
t=1

xit

)

+
T∑
t=1

µt

(
Mt −

N∑
i=1

xit

)

+
∑

(i,j)∈E

(
1

Ji

T∑
t=1

(
T∑

s=t+1

ρsij

)
xit −

1

Jj

T∑
t=1

(
T∑
s=t

ρsij

)
xjt

) (3.2)

Next, we decompose SYS-DEP-LP into a user problem per job as well as a cloud problem.

We first analyze the problem from the i-th user’s perspective. Similar to the problem without dependency
constraints, the cloud service provider sets base prices qt for each service interval t. Additionally, due to
dependency constraints, there also are associated fees for each dependency relation between jobs. If job i
directly depends on the completion of another job j, then i-th user is required to pay an extra fee θtij for its
job to be scheduled in service interval t or before. On the other hand, if another job j directly depends on
the completion of another job i, then i-th user is offered a discount bonus θtji for scheduling before service
interval t. Formally, the user-specific prices for each service interval are

zit = qt +
∑

j:(j,i)∈E

1

Ji

(
T∑
s=t

ρsji

)
−

∑
j:(i,j)∈E

1

Ji

(
T∑

s=t+1

ρsij

)
. (3.3)

Then, the user feedback is provided in the form of user budgets defined as mit = xitzit and computed
by the user problem

USER-DEP(i)

Maximize
mit≥0

T∑
t=1

mit

zit
(Fi,t − zit) (3.4)

subject to
T∑
t=1

mit

zit
≤ Ji (3.5)

5



Cloud provider then receives budgets from all users and solves the cloud problem defined as

CLOUD-DEP

Maximize
xi,t≥0

N∑
i=1

T∑
t=1

mit log xit (3.6)

subject to
N∑
i=1

xi,t ≤ M, ∀ t ∈ [T ] (3.7)∑t−1
s=1 xi,s
Ji

≥
∑t

s=1 xj,s
Jj

, ∀(i, j) ∈ E,∀t ∈ [T ]. (3.8)

Theorem 3.1. There exist an equilibrium allocation matrix x = (xi,t, i ∈ [N ], t ∈ [T ]) with associated
budgets m = (mi,t, i ∈ [N ], t ∈ [T ]), prices q = (qt, t ∈ [T ]), and dependency fees θ = (θtij , (i, j) ∈
E, t ∈ [T ]) such that

(i) mi = (mi,t, t ∈ [T ]) solves the problem USER-DEP(i) , ∀ i ∈ [N ],

(ii) x = (xi,t, i ∈ [N ], t ∈ [T ]) solves the problem CLOUD-DEP,

(iii) mi,t = xi,t

(
qt +

∑
j:(j,i)∈E

1
Ji

(∑T
s=t θ

s
ji

)
−
∑

j:(i,j)∈E
1
Ji

(∑T
s=t+1 θ

s
ij

))
, ∀i ∈ [N ], t ∈ [T ],

(iv) (Mt −
∑

i xi,t)qt = 0, ∀t,

(v)
(∑t−1

s=1 xis

Ji
−

∑t
s=1 xjs

Jj

)
θtij = 0, ∀t and ∀(i, j) ∈ E.

Further, if any matrix x is at equilibrium, i.e. has corresponding m, q, and θ that together satisfy (i), (ii),
(iii), (iv), and (v), then x solves the system problem SYS-DEP-LP.

A Proofs

Proof of Theorem 3.1. Note that we can write the Lagrangian for SYS-DEP-LP as

L(x,λ,µ,ρ) =
N∑
i=1

T∑
t=1

xitFit +
N∑
i=1

λi

(
Ji −

T∑
t=1

xit

)

+

T∑
t=1

µt

(
Mt −

N∑
i=1

xit

)

+
T∑
t=1

∑
(i,j)∈E

ρtij

(∑t−1
s=1 xis
Ji

−
∑t

s=1 xjs
Jj

) (A.1)

Now, let x be an optimal solution to SYS-DEP-LP and letλλλ,µµµ, and ρρρ be the dual variables corresponding

6



to this solution. We know that these satisfy the Karush-Kuhn-Tucker (KKT) conditions [1] given as

µt + λi +

∑
j:(j,i)∈E

∑T
s=t ρ

s
ji −

∑
j:(i,j)∈E

∑T
s=t+1 ρ

s
ij

Ji

{
= Fi,t, if xi,t > 0,

≥ Fi,t, if xi,t = 0,
∀i, t, (A.2)

N∑
i=1

xi,t

{
= Mt, if µt > 0,

≤ Mt, if µt = 0,
∀t, (A.3)

T∑
t=1

xi,t

{
= Ji, if λi > 0,

≤ Ji, if λi = 0,
∀i (A.4)

∑t−1
s=1 xis
Ji

−
∑t

s=1 xjs
Jj

{
= 0, if ρtij > 0,

≥ 0, if ρtij = 0
∀(i, j) ∈ E,∀t

(A.5)

Now, set q = µµµ, θθθ = ρρρ, and mit = xitzit where the user-specific prices are given by

zit = qt +

∑
j:(j,i)∈E

∑T
s=t ρ

s
ji −

∑
j:(i,j)∈E

∑T
s=t+1 ρ

s
ij

Ji
.

for all i, t.

We will now show that mi solves USER-DEP(i) for this q and ρρρ. Observe that mi,t = 0 if zi,t = 0
by definition. Thus, it is enough to look at the user-tier pairs for which zi,t ̸= 0. Hence, without loss
of generality, we will assume that zi,t ̸= 0 for all i and t. Consider the Lagrangian for the user problem
USER-DEP(i),

L(mi, pi) =
T∑
t=1

mit

zit
(Fi,t − zi,t) + pi

(
Ji −

T∑
t=1

mit

zit

)

where pi is the dual variable corresponding to the job size constraint (3.5). Thus, the KKT conditions for
USER-DEP(i) can be written as

zit + pi

{
= Fi,t, if mi,t > 0

≥ Fi,t, if mi,t = 0,
∀i, t, (A.6)

T∑
t=1

mi,t

zit

{
= Ji, if pi > 0

≤ Ji, if pi = 0,
∀t. (A.7)

Taking pi = λi, we observe that these KKT conditions are satisfied. Thus, mi is an optimal solution to
USER-DEP(i) with q = µµµ and θθθ = ρρρ.

Next, we will show that m is an optimal solution for the CLOUD-DEP problem. The Lagrangian for
CLOUD-DEP is given by

L(x, q̃, ρ̃ρρ) =

N∑
i=1

T∑
t=1

mit log xit + q̃t

(
M −

N∑
i=1

xit

)
+
∑

(i,j)∈E

T∑
t=1

ρ̃tij

(∑t−1
s=1 xis
Ji

−
∑t

s=1 xj,s
Jj

)

where q̃ = (q̃t, t ∈ [N ]) is the dual variable corresponding to the load constraint (3.7) and ρ̃ρρ = (ρ̃ij , (i, j) ∈
E) is the dual variable corresponding to the dependency constraint (3.8) in the CLOUD-DEP problem.

7



Consequently, the KKT conditions for the CLOUD-DEP problem can be written as

mit

xit
− q̃t −

∑
j:(j,i)∈E

∑T
s=t ρ

s
ji −

∑
j:(i,j)∈E

∑T
s=t+1 ρ

s
ij

Ji

{
= 0, if xi,t > 0

≤ 0, if xi,t = 0,
∀i, t, (A.8)

N∑
i=1

xit

{
= M, if q̃t > 0

≤ M, if q̃t = 0,
∀t. (A.9)

∑t−1
s=1 xis
Ji

−
∑t

s=1 xjs
Jj

{
= 0, if ρ̃tij > 0,

≥ 0, if ρ̃tij = 0
∀(i, j) ∈ E,∀t

(A.10)

Now, setting q̃ = µµµ, ρ̃ρρ = ρρρ we satisfy the KKT conditions (A.9) and (A.10). If mit > 0 for some i and
t, then xit > 0 and mit

xit
− zit = 0. On the other hand, if mit = 0, then xit = 0 and we have −zit ≤ 0.

Hence x is an optimal solution to CLOUD-DEP with m. Thus we have showed statements (i) and (ii) in
Theorem 3.1. Statement (iii) follows from construction, statement (iv) follows from (A.3), and statement
(v) follows from (A.5).

We now prove the later assertion, namely, if we have an equilibrium solution x,m,q, ρρρ that satisfy
(i)-(v), then x solves the system problem SYS-DEP-LP. To see this, take µµµ = q and ρρρ = ρρρ. Since mi

is an optimal solution to USER-DEP(i) with q and ρρρ, there exists dual a variable pi corresponding to the
constraint (3.5). Take λi = pi for all i. We can verify that x,µµµ,λλλ,ρρρ satisfy the KKT consitions (A.2),
(A.3), (A.5), and (A.5), and hence, form an optimal solution to SYS-DEP-LP. This completes the proof of
the theorem.

References

[1] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University
Press, 2004.

8


	Introduction
	Problem Formulation
	Analyzing SYS-DEP-ILP
	Proofs

